Parallel Iterative Discontinuous Galerkin Finite-element Methods
نویسندگان
چکیده
We compare an iterative asynchronous parallel algorithm for the solution of partial diierential equations, with a synchronous algorithm , in terms of termination detection schemes and performance. Both algorithms are based on discontinuous Galerkin nite-element methods, in which the local elements provide a natural decomposition of the problem into computationally-independent sets. We demonstrate the superiority of the asynchronous algorithm over the synchronous one in terms of the overall execution time. Our goal is to persuade parallel developers that it is worthwhile to implement the more complex asynchronous algorithm.
منابع مشابه
Block Jacobi relaxation for plane wave discontinuous Galerkin methods
Nonpolynomial finite element methods for Helmholtz problems have seen much attention in recent years in the engineering and mathematics community. The idea is to use instead of standard polynomials Trefftz-type basis functions that already satisfy the Helmholtz equation, such as plane waves [17], Fourier-Bessel functions [8] or fundamental solutions [4]. To approximate the inter-element interfa...
متن کاملA Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملA Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations
In this paper, we present a discontinuous Galerkin finite clement method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact ste...
متن کاملCoupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material
This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...
متن کاملCoupling of a method of moments adapted to planar circuit and volumic methods
Hybridization between a method of moments called WCIP (Wave Concept Iterative Procedure) and volumic methods like the FDTLM (Frequency Domain Transmission Line Method), the FEM (Finite Element Method) and the HDG (Hybridizable Discontinuous Galerkin) method is presented in 2d in this paper. The considered problem is the Helmholtz equation in the frequency domain. Two test cases are provided to ...
متن کامل